Comment: Feature Screening and Variable Selection via Iterative Ridge Regression
نویسندگان
چکیده
منابع مشابه
Causal & Non-Causal Feature Selection for Ridge Regression
In this paper we investigate the use of causal and non-causal feature selection methods for linear classifiers in situations where the causal relationships between the input and response variables may differ between the training and operational data. The causal feature selection methods investigated include inference of the Markov Blanket and inference of direct causes and of direct effects. Th...
متن کاملFeature Selection for Ridge Regression with Provable Guarantees
We introduce single-set spectral sparsification as a deterministic sampling-based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function...
متن کاملFeature Selection via Block-Regularized Regression
Identifying co-varying causal elements in very high dimensional feature space with internal structures, e.g., a space with as many as millions of linearly ordered features, as one typically encounters in problems such as whole genome association (WGA) mapping, remains an open problem in statistical learning. We propose a block-regularized regression model for sparse variable selection in a high...
متن کاملIterative Feature Selection In Least Square Regression Estimation
Abstract. This paper presents a new algorithm to perform regression estimation, in both the inductive and transductive setting. The estimator is defined as a linear combination of functions in a given dictionary. Coefficients of the combinations are computed sequentially using projection on some simple sets. These sets are defined as confidence regions provided by a deviation (PAC) inequality o...
متن کاملConcordance Measure-based Feature Screening and Variable Selection
The C-statistic, measuring the rank concordance between predictors and outcomes, has become a standard metric of predictive accuracy and is therefore a natural criterion for variable screening and selection. However, as the C-statistic is a step function, its optimization requires brute-force search, prohibiting its direct usage in the presence of high-dimensional predictors. We develop a smoot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technometrics
سال: 2020
ISSN: 0040-1706,1537-2723
DOI: 10.1080/00401706.2020.1801256